A nocturnal mammal, the greater mouse-eared bat, calibrates a magnetic compass by the sun.
نویسندگان
چکیده
Recent evidence suggests that bats can detect the geomagnetic field, but the way in which this is used by them for navigation to a home roost remains unresolved. The geomagnetic field may be used by animals both to indicate direction and to locate position. In birds, directional information appears to be derived from an interaction of the magnetic field with either the sun or the stars, with some evidence suggesting that sunset/sunrise provides the primary directional reference by which a magnetic compass is calibrated daily. We demonstrate that homing greater mouse-eared bats (Myotis myotis) calibrate a magnetic compass with sunset cues by testing their homing response after exposure to an altered magnetic field at and after sunset. Magnetic manipulation at sunset resulted in a counterclockwise shift in orientation compared with controls, consistent with sunset calibration of the magnetic field, whereas magnetic manipulation after sunset resulted in no change in orientation. Unlike in birds, however, the pattern of polarization was not necessary for the calibration. For animals that occupy ecological niches where the sunset is rarely observed, this is a surprising finding. Yet it may indicate the primacy of the sun as an absolute geographical reference not only for birds but also within other vertebrate taxa.
منابع مشابه
A functional role of the sky’s polarization pattern for orientation in the greater mouse-eared bat
Animals can call on a multitude of sensory information to orient and navigate. One such cue is the pattern of polarized light in the sky, which for example can be used by birds as a geographical reference to calibrate other cues in the compass mechanism. Here we demonstrate that the female greater mouse-eared bat (Myotis myotis) uses polarization cues at sunset to calibrate a magnetic compass, ...
متن کاملAn Aerial-Hawking Bat Uses Stealth Echolocation to Counter Moth Hearing
Ears evolved in many nocturnal insects, including some moths, to detect bat echolocation calls and evade capture [1, 2]. Although there is evidence that some bats emit echolocation calls that are inconspicuous to eared moths, it is difficult to determine whether this was an adaptation to moth hearing or originally evolved for a different purpose [2, 3]. Aerial-hawking bats generally emit high-a...
متن کاملHome range and use of diurnal shelters by the Etendeka round-eared sengi, a newly discovered Namibian endemic desert mammal
To understand habitat use by the newly described Etendeka round-eared sengi (Macroscelides micus) in northwestern Namibia, we radio-tracked five individuals for nearly a month. Home ranges (100% convex polygons) in the rocky desert habitat were remarkably large (mean 14.9 ha) when compared to sengi species in more mesic habitats (<1.5 ha). The activity pattern of M. micus was strictly nocturnal...
متن کاملFrequent Arousals from Winter Torpor in Rafinesque’s Big-Eared Bat (Corynorhinus rafinesquii)
Extensive use of torpor is a common winter survival strategy among bats; however, data comparing various torpor behaviors among species are scarce. Winter torpor behaviors are likely to vary among species with different physiologies and species inhabiting different regional climates. Understanding these differences may be important in identifying differing susceptibilities of species to white-n...
متن کاملHibernacula Selection by Townsend’s Big-Eared Bat in Southwestern Colorado
In western United States, both mine reclamations and renewed mining at previously abandoned mines have increased substantially in the last decade. This increased activity may adversely impact bats that use these mines for roosting. Townsend’s big-eared bat (Corynorhinus townsendii) is a species of conservation concern that may be impacted by ongoing mine reclamation and renewedmineral extractio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 15 شماره
صفحات -
تاریخ انتشار 2010